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Abstract 

This paper is devoted to the study of the Regional Weber Problem, an extension of the Weber problem which allows 
the demand not be concentrated onto a finite set of points. 

The most serious drawback of this formulation, from a resolution viewpoint, is the high computational cost involved 
in the evaluation of the objective function. A new approach is proposed, which requires a low amount of computation 
and where it is possible to control the error on the approximation. 

This approximation suggests a new methodology to solve the problem. This methodology is compared with the ex- 
isting ones, showing its relevance from a practical point of view. © 1998 Elsevier Science B.V. 
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1. Introduct ion 

In continuous single-facility location problems 
one looks for the location of  a facility or service 
optimizing some performance measure which de- 
pends on the location of  the server, see e.g. [1,2]. 

In this paper, we address a generalization of  the 
classical Weber problem [3] in which one seeks a 
location that minimizes the expected distance to 
a set A, of  demand points, supposed to be distri- 
bute ~n following a probabili ty measure p. 

Although most  existing papers suppose that the 
demand points constitute a discrete set, there exist 
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some cases in which it is better to assume that the 
facilities have positive area, see [4-6] for further 
details. 

This approach appears in a natural way in dif- 
ferent situations. First of  all, suppose that there ex- 
ists uncertainty on the location of  the demand; 
hence the demand is a random vector over a region 
[7-10]. Secondly, the facilities may be regions in- 
stead of  points, as suggested for instance in [11]. 
Finally, regional models fit better when there exists 
a very large number  of  demand points, making the 
discrete problem cumbersome [12]. 

In order to apply these models an important  
drawback needs to be avoided, the efficient evalua- 
tion of  the expected distances. In some cases, one 
can evaluate the expected distance to the region in- 
volved, (see [13-16] for rectangular regions or [17] 
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for polygonal regions) or one can evaluate the gra- 
dient of the expected distance, see [4]. When this 
does not happen, the usual approach has consisted 
of replacing such distances by an approximation 
with a simpler form. However, this methodology 
presents the serious pitfall that the optimal solu- 
tions of the approximate problem are hard to re- 
late with the optimal solution of the original 
problem. All of this leads us to propose a new 
methodology which keeps the error under control 
and requires a moderate computational effort. 

The rest of this paper is organized as follows. The 
Section 2 is devoted to the development of some the- 
oretical properties of the problem under study, re- 
ducing the problem to a convex program. Section 3 
analyzes the existing methodologies for this pro- 
blem, showing their drawbacks, and a new ap- 
proach is proposed and compared with previous 
attempts. Finally, Section 4 concludes the paper. 

2. Formulation and theoretical properties 

The location model we are interested in is for- 
mulated as 

min f ?(x - a) dp(a) (1) 
xER" J 

where x is the location of the facility, 7 a gauge, see 
[18,19], i.e., there exists a non-empty, convex, com- 
pact set C, the interior of which contains the ori- 
gin, such that 

f ?l(x,A) = J ?(x - a) dp(a). 

Then the following property on d is well 
known, see [4,20,17]. 

Property 2.1. The function el(., A) is finite, convex 
and hence continuous. 

The following result states some useful proper- 
ties of the level sets of the objective function. 

Property 2.2. The level sets o f  cl(.,A) are compact, 
convex sets. Hence cl(.,A) is inf-compact. 

Proof. The function d(.,A) is continuous and con- 
vex, thus the level sets are closed and convex. It re- 
mains to show that they are also bounded. 

LetR > 0 and letL(R) = {x E Rn: d(x,A) ~< R}. 
If  L ( R ) =  0, the theorem holds. If L(R) is not 
empty, for any point x in L(R), then 

R ~> d(x,A) = f T ( x -  a) dp(a) 

>~ f ( 7 ( x )  - 7(a)) dp(a) 

= ?(x) - f ?(a) dp(a) 

= 7(x) - d(O,-A), 

where 0 is the origin. 

Hence 7(x) ~< R + d(0, -A) < + ~ ,  thus L(R) is 
a subset of the ball of 7 centered at the origin with 
radius R + d(0, -A). Thus L(R) is bounded. [] 

?(x) := inf{2 ~> O: x E 2C}, Using this result one obtains Corollary 2.1. 

and p is a probability measure over a bounded set 
A C ~  n. 

It should be noted that i fp is a discrete measure 
the problem reduces to the classical Weber pro- 
blem. 

Once the model has been formulated the rest of 
this section is devoted to the study of theoretical 
properties of the objective function, which allow 
the resolution of the problem using standard algo- 
rithms for convex optimization. 

Let d(.,A) : R" -~ [0, +oc] be the function de- 
fined by 

Corollary 2.1. The set o f  optimal solution to (1) is a 
non-empty, compact, convex set. 

These properties allows us to solve the problem 
by algorithms of optimization of convex functions 
that only need the evaluation of the objective func- 
tion, such as the coordinate descent method, see 
[21]. But, as shown in Section 3, the high computa- 
tional cost associated with the evaluation of the 
objective function (namely the numerical evalua- 
tion of a bidimensional integral), leads us to ad- 
dress the problem from a different perspective. 
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3. Approximating average distances 

As we point out in previous sections the evalua- 
tion of the expected distances becomes a crucial 
step in the resolution of (1). As far as we know, 
only two different deterministic approaches have 
been proposed in the literature of location: the ap- 
proximation of regions by their centroids and by 
disks, see [22] for a review of these methodologies 
and see [17] for a non-deterministic approach. We 
devote the following subsection to describe these 
approaches. 

3.1. Approximation by centroids and disks 

In real problems the distribution of the demand 
over A is not so simple, and the evaluation of the 
expected distance can be simplified if the original 
probability measure of the demand can be seen 
or approximated with arbitrary accuracy by a mix- 
ture of distributions. This is the case when the de- 
mand is distributed over a union of k different sets 
A~, being the distribution pi on each A~, simple, e.g. 
the demand uniformly distributed on each of a set 
of rectangles. Thus (1) may be formulated as 

k 

min ~ W i f ~(X - -  a) dpi(a), (2) 
xcR°/%'£i' J 

A, 

where for each i= 1,. . . ,k,  Pi is a probability 
measure over A~ and w~ represents the relative 
weight of the probability mixture on each subre- 
gion A~. The above problem may be formulated 
equivalently as 

k 

min ~ W i d ( x ,  Ai). (3) 
xC• n 

i=1 

The simplest way to approximate this problem 
is to substitute each region Ai by its centroid c~, 
and the d(x, Ai) by 7(x - ei), leading to the Weber 
problem 

k 

min ~ wiT(x - ei). (4) 
xERn z.....a 

i=l 

Aly [23] and Vaughan [16] show that this meth- 
odology is not satisfactory, because the practical 

behavior of this methodology is strongly depen- 
dent of the norm in use, (e.g. usually good for 
the Euclidean norm and not so good for the ll 
norm), and the shape of the demand region. In ad- 
dition what is worse, is that the error of such ap- 
proximation is completely unknown but not 
necessarily small. 

In order to obtain a more precise approxima- 
tion, the next step might be to replace Ai by other 
simpler region, such as a disk. Among others, 
Drezner [12], Koshizuka and Kurita [11] and 
Stone [15], have proposed to replace each subre- 
gion A/ by a disk Ci centered at the centroid and 
with the same area. This leads to solve the problem 

k 

min ~-~ wi cl(x, Ci). (5) 
xERn ~ 

Vaughan, in the above mentioned paper, stu- 
dies such substitution, concluding that the approx- 
imation does not work properly for some regions. 

From a practical viewpoint there exists an- 
other serious drawback: the expected distance to 
a disk is known only for special gauges and even 
in these cases, the expressions obtained are very 
cumbersome and must be approximated. In addi- 
tion, in these methodologies, the question of how 
large the errors are remains still open. This ques- 
tion must be answered through computational 
studies. 

3.2. Approximating the probability measure 

The objective of this section is to find an ap- 
proximation to the expected distances d(.,A) sub- 
stituting the region A, such that the error is kept 
under control. 

To do this we propose to find a region R C E" 
verifying: 
1. d(.,A) _~ d(. ,R), 
2. the evaluation of d(., R) is much easier than the 

evaluation of d(., A). 
Let R be a set, such that p(R) > 0. Then the ex- 
pected distance from x to R is given by 

 lxRl: / lx-al lal 
R 
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Let 8(x) = sup,~, y(x - a), e(x,R) = Id(x,A) 
- d ( x , g ) [  be the error when A is replaced by R, 
and ~(x, R) = ((1 - p(R))/p(R))8(x). Observe that 
k is finite since A is, by assumption, a bounded 
set. 

The Lemma 3.1 shows that k is an upper bound 
o f  e .  

<<. 

p(A\R) 
sup 7(x - a) 

p ( R )  acA\R 

1 -p (R)  
- -  sup 7(x - a). 

p(R) a~A 

Hence 

Lemma 3.1. One has e(x, R) <<. k(x, R). 

Proof. First, 

d(x,R) - (t(x,A) 

--llsi',I.-a> dp(a) -/,Ix-a> dp(a) 
R A 1(/ < 

p(R) 7(x - a) dp(a) - p(R) 7(x - a) dp(a) 

A l(f >/ 
~ < p - ~  7 ( x - a )  d p ( a ) - p ( R  y ( x - a )  dp(a 

A 

_ 1 - p ( R )  f~'(x-a)dp(a) 
p(R) J 

,4 

<~ scupT(x - a). 

On the other hand 

d(x,A) - d(x, R) 

= / , , ( x - ~ ) @ ( ~ ) - p @ ) j ~ ( x - a ) d p ( a )  

A R 

p(R) (R) 7 ( x -  a) dp(a) - 7(x - a) dp(a 
R 

~< ~ V(x-  a) dp(a) - 7 ( x -  a) dp(a 

R 

_ 1 fA 7(x--a)dp(a) p(R) \R 

e(x,R) <<. 1 - p ( R )  su p(R) o~P T(X - a). [] 

If one may control the error of the approxima- 
tion, then the problem would be solvable with any 
given accuracy. Therefore, the next step is the de- 
velopment of conditions which assure that the 
error converges to zero. Obviously, the conver- 
gence of  the error to zero can be obtained by for- 
cing its upper bound to converge to zero. Observe 
that k(x,R) is non-increasing in p(R) and conver- 
ging to zero when p(R) converges to 1. So, the er- 
ror can be taken as small as desired. 

Theorem 3.1. Let ~,8 > O. I f  R is such that 
p(R) >1 8/(~ + 6) then sup{e(x,R): 8(x) <~ 6} <~ ~. 

Proofi Consider x such that 8(x) ~< 8. By Lemma 
3.1 one has that 

e(x, R) ~ O(x, R) - 1 - p(R) 8(x) ~ 1 - p(R) 8. 
p(R) p(R) 

By assumption p(R)>>. 6 / ( e + 8 )  which implies 
((1 -p (R) ) /p (R) )8  <<. e and the result follows. []  

Remark that this result gives a uniform bound 
for the error e. 

3.3. An example 

In this example we use the above results in a 
problem in which y is the Euclidean norm and 
the demand is distributed over a union of elliptical 
regions in the plane, showing first how to approx- 
imate the expected distance to an ellipse and then 
comparing such approximation with previous ap- 
proaches. 
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3.3.1. Expected distances to an ellipse 1,5o- 
We assume that, given x E ~2 and a triangle T, 

we know how to evaluate exactly the expected dis- 1,25 ' 
tance d(x, T), see [17] for an algorithm. 

The problem addressed in this section is the 
evaluation of the expected distances from a point 1,00 
x E R 2 to another point uniformly distributed in 
an ellipse centered at the origin with rx and ry as 0,75 
half of the length of the axes. This average distance 
can be approximated by replacing each ellipse by a 0,50 
polygon with m sides. 

To do this, let Pl = (rx cos(2M/m), ry sin(2M/ 
m)) for each l = 0 , . . . , m  and Ti be the triangle 0,25 
with vertices O, Pt and PI+I for l = 0 , . . . ,  m - 1. 
T h e n  R m : =  UT--O 1 T 1 is a polygon with m sides. 0,00  

Since the area of these triangles are 
rxry/2sin(2rc/m) then the area of R,n is mrxry/2 
sin(2rt/m), and then p(Rm) -- m/(27~) sin(2zt/m). 
By Lemma 3.1, one obtains 

O(x, Rml = m sin(- ) 1 

Remark 3.1. The error depends on the number of 
sides and the gauge used only through the highest 
distance from x to the ellipses. 

Although for this case one could improve the 
bound of the error by exploiting the geometry of 
the problem, it should be noted that this bound 
is quite good. Indeed, it is easily checked that, tak- 
ing limit in m, 

lim m2e(x, Rm) = 2~z2~(x), 
m~q-OO 

thus ~(x,R,,) is of the same order than 1/m 2. 
Theorem 3.1 implies that the error can be cho- 

sen as small as desired taking a sufficiently large 
number of triangles. However, a large number of 
sides involves a high computational cost. The rest 
of this section is devoted to illustrate the fact that 
the results are very good even when the number of 
sides considered is not too large. 

If the scalar 6(x) is fixed for any given problem, 
then the error behaves like 

2~ 
~(Rm) = m sin(-~) 1. 

m P f 

I 
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Fig. 1. Real error. 

A simple computational study allows us to fig- 
ure out that the real errors are very small with re- 
spect to the upper bounds which are themselves 
also small, (i(Rl0) -~ 0.07 and ~(R25) ~- 0.01). This 
fact is shown in Figure 1, where we represent such 
values for the expected distances from the origin to 
the unit disk centered at the origin. 

The percentage of error is estimated using 
the value obtained replacing the disks with a poly- 
gon with 1000 sides. This is admissible approxima- 
tion since the error is lower than ~(Rl000)= 
0.00000658. Thus, the real errors e(R]o) = 0.02164 
and e(R25)= 0.003499, represent relative errors 
of 3.25% and 0.52%, respectively, whereas the 
upper bound suggests relative errors of 10.34% 
and 1.59%. Different examples show similar ratios 
between the error and its upper bound. 

Table 1 shows the computational time (in milli- 
seconds) needed to get the error in column "Error" 
using the number of triangles in colums "sides". 
Hence, the low computational cost allows us to 
recommend the use of triangular approximations 
instead of other procedures. 

3.3.2. Resolution and comparison 
Koshizuka and Kurita [11] have proposed to 

solve the problem of piecewise uniform regional 
demand by replacing each region by a disk. At 
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Table 1 
Triangular approximation 

Error Sides ms 

1 4 0 
0.1 9 0 
0.01 26 11 
0.001 82 22 
0.0001 257 99 
0.00001 812 275 

the same time they propose an approximation of 
the expected distance to a point uniformly distrib- 
uted on a disk using Taylor expansions. 

This section is devoted to compare the disk ap- 
proximation and our methodology. In order to do 
that, we consider the location problems in [16] 
(and some of them slightly modified) to evaluate 
the approximation of expected distances to regions 
by the expected distances to disk. 

The problems are depicted in Fig. 2. The de- 
mand is a mixture of uniform distributions over 
rectangles, such that the weight of each rectangle 
is equal to its area. The solutions are given in Ta- 
ble 2, where: 
• (x,y) is the exact solution of the problem. 
• z is the objective function at point (x,y). 
• (xc,y,.) is the solution of the problem replacing 

each rectangle by a disk. 
• zc is the (exact) objective function at point 

(Xc,y,,). 
• ec is the percentage of error, lO0(zc - z ) / z .  

PI,, Plb 

? 
P4a P4b 

P2a P2b 

P3b P3c 

P4~ P4d 

Fig. 2. Example problems. 

• (x3,Y3) is the solution of the problem replacing 
each rectangle by a disk, and then replacing 
each disk by a triangle. 

• z3 is the (exact) objective function at point 
(x3,Y3).  

• e3 is the percentage of error, 100(z3 - z ) / z .  

Table 2 
Solutions of  example problems 

Problem Pla P~b Pz~ Pzh P3a e3b P3c P5a eSb P5c eSd 

x 1.000 1.000 0.806 0.500 0.756 0.706 0.635 0.703 0.663 0.607 
y 0.500 0.000 0.806 0.500 1.500 1.179 1.059 2.500 2.191 2.067 
z 1.187 1.530 2.169 2.469 3.391 3.731 4.500 7.459 7.800 8.551 

x3 0.978 1.042 1.095 0.482 1.154 1.167 1.180 1.219 1.213 1.234 
Y3 0.500 -0.028 0.732 0.120 1.500 0.861 0.133 2.500 1.822 1.022 
z3 1.187 1.531 2.286 2.612 3.668 4.159 5.631 8.053 8.563 10.372 
e3(%) 0.04 0.06 5.37 5.77 8.18 11.42 25.16 7.96 9.91 21.30 

xc 1.000 1.000 1.086 0.500 1.134 1.134 1.134 1.191 1.191 1.191 
y,, 0.500 0.000 0.707 0.121 1.500 0.866 0.233 2.500 1.810 1.117 
zc 1.187 1.530 2.283 2.611 3.643 4.111 5.441 7.992 8.526 10.103 
e,,(%) 0.00 0.00 5.22 5.72 7.41 10.19 20.93 7.15 9.44 18.15 

0.574 
2.030 
9.453 

1.219 
0.327 

12.946 
36.95 

1.191 
0.428 

12.594 
33.23 
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4. Conclusions 

3•°C* 
8 

Fig. 3. Disks and rectangles example. 

Note that when we replace the disks involved 
by triangles, the solution of  this problem is very 
close to the disk problem solution. This confirms 
the fact that a disk can be replaced by a regular 
polygon, even when it has a small number of  sides. 

In order to complete these examples, we want 
to include one more that involves not only rectan- 
gles: Consider that we have four types of  demands, 
each of  that is uniformly distributed over regions 
R1, R2, R3 and R4, respectively, with weights of  
8, 2, 3 and 27. See the problem depicted in Fig. 3 
(the number inside each figure is its weight). 

The point C* = (2.2148, 5.2993) is the solution 
of  the disk approximation problem, and X * =  
(4.8823, 3.9729) is the solution of  the original pro- 
blem. The expected mean distance from X* is 
43.1867 and the expected distance from C* is 
55.2264. This is 27.88% higher. 

Note that, even in these simple examples, we 
have found cases in which the percentages of  errors 
are very high when we replace regions by disks. 

Regarding the computational cost, we can say 
that the exact problem has been solved in 0.1 s, 
in the worst case, using the easily implementable 
coordinatewise descent method, see [21]. 

From this, one should expect that very large 
real problems can be solved in a moderate amount  
of  time, by replacing regions by polygons, as done 
by Geographical Information Systems (GIS). 

This paper is devoted to the study of the Weber 
problem with regional demand, which is an exten- 
sion of  the standard Weber problem in which the 
demand is not assumed to be concentrated at a finite 
set, but follows an arbitrary probability measure. 

We develop some properties of the objective 
function that allow us to solve the problem by ex- 
isting techniques of  convex optimization, but, as it 
is remarked, the evaluation of the objective func- 
tion has a high computational cost. This problem 
is solved through a new approximation of the 
objective function, consisting of  replacing the de- 
mand distribution by a simpler one. This metho- 
dology enables us to keep the error under control. 

Some examples show that the requirements are 
very moderate. In fact with a small computational 
effort one can obtain good results. This fact sug- 
gests that this methodology may be applied to real 
problems. 
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